学术交流

史恩慧: Topological and algebraic obstructions for distal minimal group actions on continua

时间:2021-05-21来源:数学学院

报告时间:2021年5月27日(星期四)15:30-16:30

报告平台:腾讯会议 ID:879 606 982

:史恩慧 教授

工作单位:苏州大学

举办单位:数学学院

报告简介

We study the topological characters of a continuum $X$ and the algebraic structures of a group $G$ that forbid $G$ from acting on $X$ distally and minimally. Explicitly, we obtain the following results: (1)  Let $G$ be a lattice in ${\rm SL}(n, \mathbb R)$ with $n\geq 3$ and $\mathcal S$ be a closed surface. Then $G$ has no distal minimal action on $\mathcal S$. (2) If $X$ admits a distal minimal action by a finitely generated amenable group, then the first \v Cech cohomology group $ {\check H}^1(X)$ with integer coefficients is nontrivial. In particular, if $X$ is homotopically equivalent to a CW complex, then $X$ cannot be simply connected.

报告人简介

史恩慧,苏州大学数学科学学院,教授。主要从事群作用拓扑动力系统研究,在TAMS、Fund. Math.、ETDS、Israel Math.、PAMS等核心期刊发表论文30余篇。主持国家面上项目2项, 参加重大项目子课题1项。

关闭

XML 地图 | Sitemap 地图